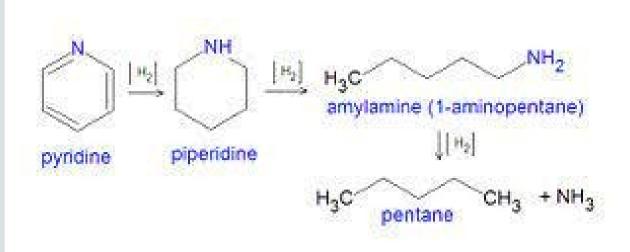
Institut Mines-Télécom

# Estimation of a catalyst lifespan through machine-learning



Examples of <u>organic nitrogen</u> <u>compounds</u> to be catalytically removed with hydrogen.

### **1. Introduction**

- **Context:** catalytic hydrodenitrification of crude oil distillates.
- ► Aging of the catalyst: increase of the necessary reaction temperature until 450 °C is reached  $\rightarrow$  replacement of the catalyst.
- Goal: predict the evolution of a catalytic reactor's temperature based on data from similar reactors (machine learning).

### 2. Pre-processing

#### Partners

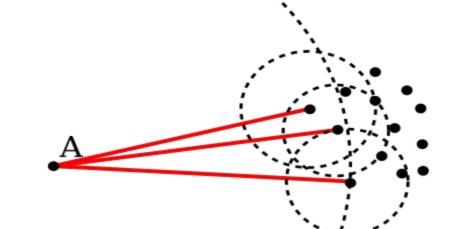


#### Auteurs

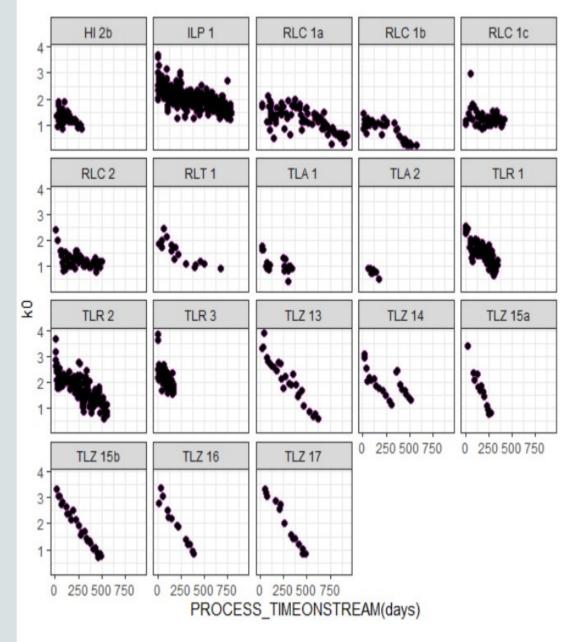
Marc Fischer\* Quentin Lemay\* Benoît Celse\*\*

#### Partenaires

\*Mines Saint-Etienne, Univ Lyon, CNRS, UMR 5307 LGF, Centre SPIN, F-42023 Saint-Etienne France,



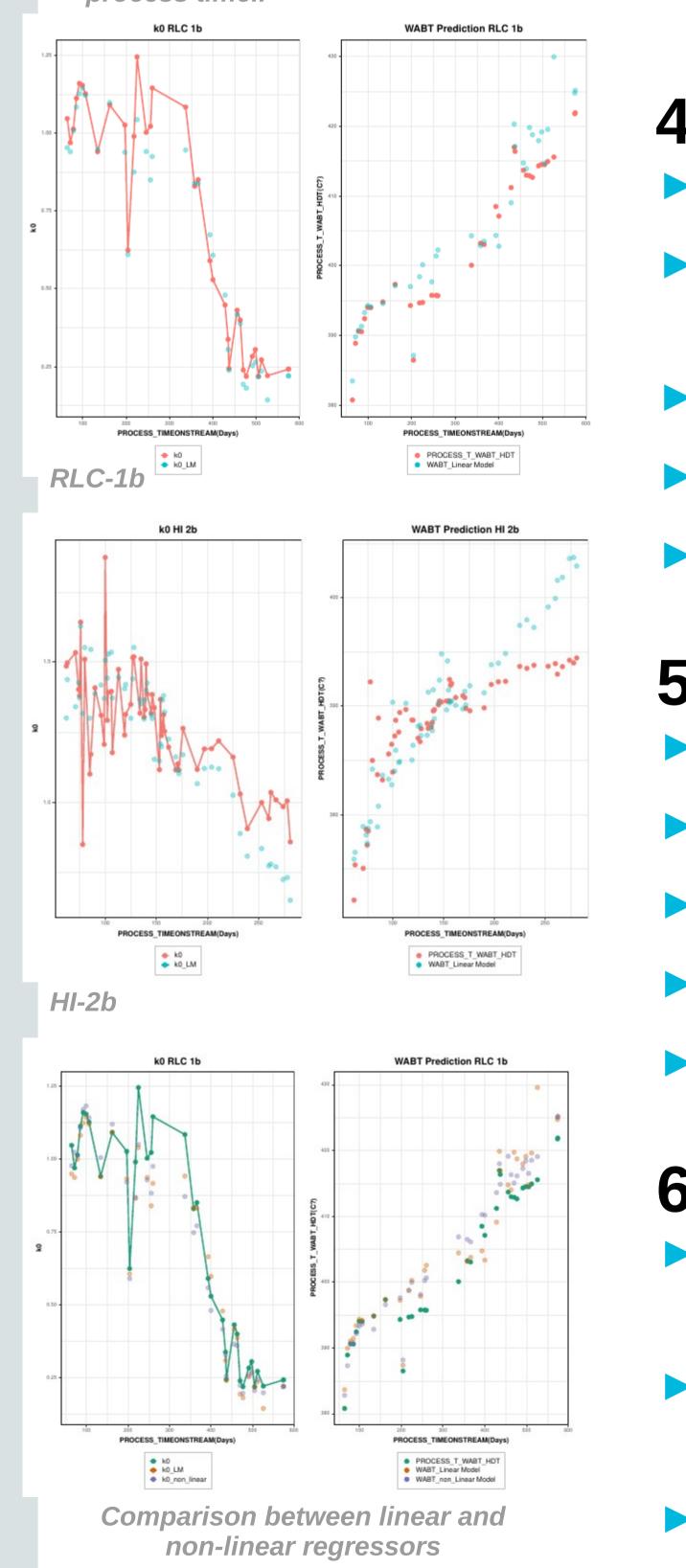
Basic idea of LOF: comparing the local density of a point with the densities of its neighbors. A has a much lower density than its neighbors.



Experimental profiles of k0 for different catalysts as a function of process time..

- Variable selection : 12 most relevant variables selected based on expert knowledge: t, p, p(H<sub>2</sub>)<sub>out</sub>, q<sub>feed</sub>, q<sub>outlet</sub>, reflux - ratio, p(N)<sub>out</sub>, p(S)<sub>in</sub>, p(resines), p(N)<sub>in</sub>, density<sub>in</sub>, p<sub>H<sub>2</sub>, in</sub>
- Missing values: removal of physically aberrant and missing values.
- **Computation of cumulative variables :**  $CUMSUM = \sum_{i=1}^{n-1} \frac{h_i}{2} (X_{i+1} + X_i)$ .
- Identification and removal of outliers: use of the local outlier factor (LOF).
- Remaining data: 23 cycles and 1885 time points.
- **3. Methodology Chemical kinetic model:**  $\frac{dC_N}{dt} = \frac{-k_0 \cdot exp\left(-\frac{E_a}{R}\left(\frac{1}{T} - \frac{1}{T_0}\right)\right)\left(\frac{ppH_2}{ppH_{2,ref}}\right)^m \cdot C_N^n}{(1 + A_0 \cdot Res_0)\left(1 + C_0\frac{C_{N,0}}{C_{S,0}}\right)}$
- **Prediction** of the catalyst efficiency represented by  $k_0$ .
- **Computation** of the experimental  $k_0$  from the temperature measurements and computation of the predicted *T* from the predicted value of  $k_0$ .
- **Design mode**: we suppose that we know the profiles of all other variables than T and use them to predict  $k_0(t)$  and in turn T(t) at a given time t.
- ▶ Multiple linear model: based on 10 regressors, we seek to predict  $log(k_0)$ .
- **Cross-validation:** the evolution of T(t) for a cycle is predicted based on all

#### \*\*IFP Energies Nouvelles, Rond Point de l'échangeur de Solaize, BP 3, 69360 Solaize, France,



other cycles.

| I. Results      | Mean RMSE                    | 4.847           |
|-----------------|------------------------------|-----------------|
| Global metrics: | Standard deviation<br>Median | $1.774 \\ 4.27$ |

- Satisfying average prediction error: -> the average prediction error for T is 4.8 °C.
- Some cycles such as RLC-1b are well predicted from the beginning to the end.
- For others such as HI-2b there is a systematic gap towards the end.
- Linear relationships are not enough to fully grasp the system's behavior!

## **5. Addition of non-linear terms**

- Addition of non-linear terms to the regressors :  $X^2$ , log(X),  $\sqrt{X}$ ,  $\frac{1}{X}$ , XY
- We now want to select the 10 best regressors out of 552 potential regressors.
- Doing an <u>exhaustive</u> search would be computationally prohibitive.
- Use of an <u>adaptive random search</u> to find a good combination of regressors.

| A modest improvement could be reached: | Me                   |
|----------------------------------------|----------------------|
| A modest improvement could be reached. | $\operatorname{Sta}$ |
|                                        | $\mathbf{M}$         |

|                |              | J                |
|----------------|--------------|------------------|
| rics           | Linear model | Non-linear model |
| n RMSE         | 4.847        | 4.186            |
| dard deviation | 1.774        | 1.817            |
| lian           | 4.27         | 3.541            |

### 6. Conclusion and outlook

- While multiple linear regression is conceptually very simple, a reasonable agreement was reached.
- To better grasp the non-linear relationship, methods like neural networks and support vector regression could prove quite fruitful.
- It is also important to make sure that the machine learning method does not deliver unphysical predictions.
- Introduction of weights depending on the proximity of the cycle to the cycle to be predicted.
- ▶ What if mode: regression model based on both the other cycles and the beginning of the cycle  $\rightarrow$  creation of a digital twin.