Institut Mines-Télécom

Ultra-fast calculation of conductive heat transfer in a moving granular medium

1. Introduction

□ Particle-fluid systems can be found:

• industries (fluidized beds, rotary kilns, ...)

Numerical simulations

• natural phenomena (avalanches, pyroclastic flows, ...)

2. Scientific challenge

How to accelerate the simulations of the processes at an industrial time scale?

bjectives

Orange \rightarrow Green

Green \rightarrow Red

Numerically: Discrete Element Method (DEM) for particles

Micr

4.

Saint-Étienne Une école de l'IMT

MINES

Parties prenantes

Auteurs

Clara HAYDAR Sylvain MARTIN **Olivier BONNEFOY**

Partenaires

	numerical s	imulations		one period of time over a longer period			
Contact Forces Transfers				Application to conductive heat transfer in rotary drum			
		e: CPU time	Industrial levelZillions of particles	Standard DEM		Extrapolated DEM	
				In one week	One million of particles	In one minute	
				For one minute of real time			
Propo	osed nume	rical meth	nod				
Step 1			Step 2		Step 3: This work		
DEM simulation for one period		Gran	ular motion extrapolation Pairing algorithm[1]		Ultra-fast simulation for heat transfer in granular media		
$\frac{d\mathbf{x}}{dt}$	$\frac{1}{t} = \mathbf{v_i}$			Output Red → Blue		neat conduction ation [2])
$\frac{d\boldsymbol{\theta}_{\mathbf{i}}}{dt} = \boldsymbol{\omega}_{\mathbf{i}}$				Blue \rightarrow Oran	$\dot{Q_{ij}} = K_{s}$	$_{s}(T_{i}-T_{j})$	

Develop models for pseudo-periodic systems to extrapolate DEM results from longer period ansfer in rotary drum **Extrapolated DEM** In one minute time

Output: Extrapolated temperature of the particles

 $m_p C_i \frac{dT_i}{dt} = \sum (\dot{Q_{ij}}_{contacts})$

5. Results//Temperature field

 $m_p \frac{d\mathbf{x_i}}{dt} = \sum (\mathbf{f_{ij}^t} + \mathbf{f_{ij}^n})$ $I_i \frac{d\boldsymbol{\omega_i}}{dt} = \sum (\mathbf{f_{ij}^t} \times \mathbf{r_{ij}})$

100 000 particles

- Half cold/ half hot
- Adiabatic wall
- Biot < 1
- Restitution coefficient= 0.2
- Rotation speed of drum ω = 5 s
- $\tau = 10 \text{ s} = 2 \omega$

Time (s)

Experimental Validation

UNION EUROPEENNE

6. Conclusions

Work Done/Novelty

DEM simulation for rotary kiln

- Standard DEM and extrapolated DEM simulation with pairing algorithm
- □ Ultra-fast simulation for conductive heat transfer
- Extrapolation of the heat transport in granular media (massive reduction of CPU time)

Perspectives

- Adaptation of the algorithm for fluid (convective heat transfer)
- Extrapolation of results from a coupled CFD-DEM simulation
- Validation of numerical results with experimental setup
- Setting up experiments on the constructed rotary kiln for validation purpose

7. References

[1] Bednarek, X., Martin, S., Ndiaye, A., Peres, V., & Bonnefoy, O. (2019). Extrapolation of DEM simulations to large time scale. Application to the mixing of powder in a conical screw mixer. Chemical Engineering Science, 197, 223–234.

[2] Chaudhuri, B., Muzzio, F. J., & Tomassone, M. S. (2006). Modeling of heat transfer in granular flow in rotating vessels. Chemical Engineering Science, 61(19), 6348 - 6360.

[3] Kloss, C., Goniva, C., Hager, A., Amberger, S., & Pirker, S. (2012). Models, algorithms and validation for opensource DEM and CFD-DEM. Progress in Computational Fluid Dynamics, An International Journal, 12(2/3), 140.

[4] Lichtenegger, T., & Pirker, S. (2016). Recurrence CFD – A novel approach to simulate multiphase flows with strongly separated time scales. Chemical Engineering Science, 153, 394–410. [5] Siegmann, E., Enzinger, S., Toson, P., Doshi, P., Khinast, J., & Jajcevic, D. (2021). Massively speeding up DEM simulations of continuous processes using a DEM extrapolation. Powder Technology.

Contact : clara.haydar@mines-stetienne.fr