Institut Mines-Télécom

Modeling the influence of temperature on product distribution from biomass fast pyrolysis by the Monte Carlo method.

Background - Bio-oil resulting from fast pyrolysis of biomass is considered as a valuable ressource of chemicals, - Process modelling requires to conduct biomass fast pyrolysis under kinetic-controlled regime. ${ }^{1}$

Heat equation ${ }^{1}$

$$
\begin{gathered}
\partial_{t}\left(\rho_{B} C_{p}^{B} T\right)=\nabla \cdot(-\lambda \nabla T)+Q_{r x n}(T) \\
T\left(t=t_{0}\right)=T_{0}
\end{gathered}
$$

IMT Mines Albi-Carmaux

Authors

Permanent Faculties:

Mouna El Hafi
Marion Carrier
Simon Eibner
PhD candidate:
Abderrahim Sahim*

References

1. Manel Nasfi et al. Journal of Analytical and Applied Pyrolysis. V 165, August 2022, 105582, doi: 10.1016/j.jaap.2022.105582
2. Eliseo Ranzi et al. ACS

Sustainable Chem. Eng. 2017, 5
4, 2882-2896, doi
10.1021/acssuschemeng.6b030 98
3. Mouna El Hafi et al. Journal of Quantitative Spectroscopy and Radiative Transfer. Volume 260,
February 2021, 107402, doi: 10.1016/j.jqsrt.2020.107402
4. Sergey Vyazovkin et al. Thermochimica Acta. Volume 520, Issues 1-2, 2011, Pages 119,
doi-10
doi:10.1016/j.tca.2011.03.034
5. Yaniss Nyffenegger-Péré et al J. Phys. Chem. A 2023, 127, 8, 1988-1997, doi:
10.1021/acs.jpca.2c06893.
6. Robert K. Brayton et al. Proceedings of the IEEE, vol. 60 no. 1, pp. 98-108, Jan. 1972, doi 10.1109/PROC.1972.8562.

Contacts

*asahim@mines-albi.fr

Objectives

- Study the effect of heat transfer on the distribution of pyrolytic products.
- Model pyrolysis kinetics of a biomass sample arrangement in a reactor by considering the thermal mechanisms of its environment and within it.
- Perform a thermal kinetic coupling in the system (reactor + biomass) through a formulation in path space and as nested expectations, using Monte Carlo simulation.

Illustration of Monte Carlo simulation

Kìnetic modeling

- Degradation pathway: Transcription of a non-linear $1^{\text {st }}$ order ODEs system into an expectation system ${ }^{3}$
$\left\{\begin{array}{l}\frac{d X_{A}(t)}{d t}=-k_{1}(t) X_{A}(t) \\ \frac{d X_{B}(t)}{d t}=k_{1}(t) X_{A}(t)-\left(k_{2}(t)+k_{3}(t)\right) X_{B}(t) \\ \frac{d X_{C}(t)}{d t}=k_{2}(t) X_{B}(t) \\ \frac{d X_{D}(t)}{d t}=k_{3}(t) X_{B}(t)\end{array}\right.$

$$
k_{2}(t)+k_{3}(t)=k_{s}(t)
$$

$$
\begin{aligned}
& X_{A}(t)=\int_{0}^{+\infty} \widetilde{k}_{1} e^{-\widetilde{k}_{1} \tau} d \tau\left(\mathcal{H}(t>\tau)\left[X_{A}(0)\right]+\mathcal{H}(t<\tau)\left[\frac{\widetilde{k}_{1}-k_{1}(t-\tau)}{\widetilde{k}_{1}} X_{A}(t-\tau)\right]\right) \\
& X_{B}(t)=\int_{0}^{+\infty} \widetilde{k}_{s} e^{-\widetilde{k}_{s} \tau} d \tau\left\{\begin{array}{l}
{\left[X_{B}(0)\right]} \\
{\left[\frac{k_{1}(t-\tau)}{\widetilde{k}_{s}} X_{A}(t-\tau)+\frac{\widetilde{k}_{s}-k_{S}(t-\tau)}{\widetilde{k}_{s}} X_{B}(t-\tau)\right] \mathcal{H}(t<\tau)}
\end{array}\right. \\
& X_{c}(t)=\int_{0}^{t}\left[\frac{k_{2}(\tau) X_{B}(\tau)}{p d f_{c}(\tau)}\right] p d f_{c}(\tau) d \tau \\
& X_{D}(t)=\int_{0}^{t}\left[\frac{k_{3}(\tau) X_{B}(\tau)}{p d f_{D}(\tau)}\right] p d f_{D}(\tau) d \tau
\end{aligned} \quad \begin{aligned}
& \forall i \epsilon\{A, B, C \text { or } D\} X_{i}(t)=\mathbb{E}(W(\tau)) \simeq \frac{1}{N} \sum_{k=0}^{N} \omega\left(\tau_{k}\right)
\end{aligned}
$$

Arrhenius law ${ }^{4}, k_{j}(T)=A_{j} e^{\frac{-E_{a j}}{R T}}\left[s^{-1}\right]$
Upper bound of the reaction rate constant, $\boldsymbol{k}_{j}: \widetilde{\boldsymbol{k}}_{j}{ }^{5}\left[s^{-1}\right]$

Resulis and Conclusions

All calculations were performed with a sample size of $\mathrm{N}=1 \mathbf{1 0}^{4}$

- Monte Carlo Integral Formulation can solve a system of non-linear $1^{\text {st }}$ order
- It is possible to estimate mass fraction or molar fraction via several and independent probe points calculations (Each point showed in the figure above). Thermal/kinetic coupling can be treated in the case of prescribed thermal model

Perspectives

- Working on complex degradation pathways related to the lumped or detailed models representing pyrolysis kinetics.
Treating stiffness that represents one of the most challenging properties of chemical systems.
Studying the thermal/kinetic coupling with the non-reactive biomass in zero-dimension, or by considering the internal diffusion, and the reactive biomass model via a single Monte Carlo algorithm.

Thermal modeling

$>$ Heat equation: Thin and non-reactive biomass film ${ }^{1}$
$V_{B} \rho_{B} C_{p}^{B} \frac{d T}{d t}=-U_{\text {ext }}\left(T-T_{c u p}\right) S_{B}$
$\left\{\begin{array}{cl}T\left(t=t_{0}\right)=T_{0} & =293.15 \mathrm{~K} \\ T_{\text {cup }} & =\mathbf{7 5 0} \mathrm{K}\end{array}\right.$

- Analytical solution:

$$
\gamma=\frac{S_{B} U_{e x t}}{V_{B} \rho_{B} C_{p}^{B}}
$$ ODEs and by default a system of linear $1^{\text {st }}$ order ODEs

$$
T(t)=T_{c u p}+\left(T_{0}-T_{c u p}\right) e^{-\gamma\left(t-t_{0}\right)}
$$

C_{p}^{B}	$\left[J . \mathrm{K}^{-1} \cdot \mathrm{~kg}^{-1}\right]$
ρ_{B}	$\left[\mathrm{~kg} \cdot \mathrm{~m}^{-3}\right]$
V_{B}	$\left[\mathrm{~m}^{3}\right]$
S_{B}	$\left[\mathrm{~m}^{3}\right]$
$U_{\text {ext }}$	$\left[W \cdot \mathrm{~m}^{-2} \cdot \mathrm{~K}^{-1}\right]$
γ	$\left[\mathrm{s}^{-1}\right]$
$P y^{I I}=\frac{k}{\gamma} \sim 10^{2}-10^{4}$	

