
Analyse de la sécurité des
Firmware de systèmes
embarqués avancées et défis.

Aurélien Francillon

Colloque IMT "Gestion de crise et numérique"

RFID

Sensors

SmartCards Connected devices

Industrial
systems

Embedded devices diversity

 Video Protection

Before IoT

 Video Protection Surveillance

Before IoT

IoT: composition

Session Title 2

Composition kills

Slide Courtesy of T. Goodspeed

Dynamic Firmware analysis

● Executing code on the device :
– Limited visibility
– Difficult to perform advanced analysis

● Emulators
– Looks like the perfect solution
– E.g., QEMU supports many architectures

Too many peripherals to emulate

SoK: Enabling Security Analyses of Embedded Systems via Rehosting
A. Fasano, T. Ballo, M. Muench, T. Leek, A. Olienik, B. Dolan Gavitt, M. Egele, A. Francillon, L. Lu, N. Gregory, D. Balzatotti, W. Robertson
ACM ASIACCS 2021

Emulators exist
 but are not sufficient

● Virtual machines are used extensively
– Usually emulate limited set of basic peripherals
– Desktop/server operating systems will load the right

drivers
● Embedded devices are often very custom

– Very specific peripherals
– Firmware will only include the code for the right

peripherals
● won’t execute properly without the right peripheral interactions

Devices access

● Device and debug available: more control over
the software execution

● Or completely black-box
● Device available but no debug/firmware
● Development device or commercial

Approaches are as diverse as the
devices

● How generic is the code to test ?
– Web interface, Linux application or bare metal

application
● Which analysis methods to use

– Dynamic: Fuzzing, Symbolic execution ?
– Static: Simple or advanced binary analysis?

Dynamic analysis techniques
for security evaluation

Techniques that are typically used on a PC
● Advanced debugging techniques

● Tracing
● Fuzzing
● Tainting
● Symbolic Execution

1

32

4 5

Techniques that are typically used on a PC
● Advanced debugging techniques

● Tracing
● Fuzzing
● Tainting
● Symbolic Execution

1

32

4 5

Trace

1: x = 4
3: x = 4

1

32

4 5

Trace

1: x = 4
1

32

4 5

1

32

4 5

Trace

1: x = 4
3: x = 4
4: x = 6

Dynamic analysis techniques
for security evaluation

Collecting an execution trace

1
9

32

4 5

Dynamic analysis techniques
for security evaluation

Techniques that are typically used on a PC
● Advanced debugging techniques

● Tracing
● Fuzzing
● Tainting
● Symbolic Execution

1

32

4 5

Testcase A
x = 4

A

Testcase A
x = 4

Testcase B
x = 2

B

Testing with random input

Dynamic analysis techniques
for security evaluation

Techniques that are typically used on a PC
● Advanced debugging techniques

● Tracing
● Fuzzing
● Tainting
● Symbolic Execution

1

32

4 5

X=<input>
Y=0
Z=0

X
Y
Z

tainted

Y=X+Y
Z=23

Data flow tracking

Dynamic analysis techniques
for security evaluation

Techniques that are typically used on a PC
● Advanced debugging techniques

● Tracing
● Fuzzing
● Tainting
● Symbolic Execution

1

32

4 5

X = σ

X 3≤
X > 3

3 < X 7≤

X = 2

X = 4 X = 9

Multipath exploration
X > 7

3 < X 7≤

Dynamic analysis techniques
for security evaluation

Techniques that are typically used on a PC
● Advanced debugging techniques

● Tracing
● Fuzzing
● Tainting
● Symbolic Execution

1

32

4 5

X = σ

X 3≤
X > 3

X = 2

X = 9

Multipath exploration

X = 4

X > 7

3 Categories of devices

Measuring effect of device type

What You Corrupt Is Not What You Crash: Challenges in Fuzzing Embedded Devices
Marius Muench, Jan Stijohann, Frank Kargl, Aurélien Francillon, Davide Balzarotti
NDSS 2018

 28

Rehosting for
Dynamic Firmware Analysis

● In general emulation of firmware is difficult:
– Manual
– Imperfect
– Leads to incorrect executions

● Can we automate this?

 29

Rehosting for
Dynamic Firmware Analysis

● In general emulation of firmware is difficult: Manual, Imperfect

● Automate it?

SoK: Enabling Security Analyses of Embedded Systems via Rehosting
A. Fasano, T. Ballo, M. Muench, T. Leek, A. Olienik, B. Dolan Gavitt, M. Egele, A. Francillon, L. Lu, N. Gregory, D. Balzatotti, W. Robertson
ACM ASIACCS 2021

 30

Avatar²

● Our hardware-in-the-loop rehosting approach
● When we have the firmware and the device with

debug access

 31

Emulator

 . . .
mov r2, r0
mov r3, r1
add r3, r3, #1
ldr r2, [r2, #0]
cmp r2, r3
 . . .

Device

In-memory
stub

Memory
Registers
CPU state

Device

In-memory
stub

Memory
Registers
CPU state

Avatar

Analysis script

plugins
Analysis
plugins

Avatar² overview

 32

Emulator

 . . .
mov r2, r0
mov r3, r1
add r3, r3, #1
ldr r2, [r2, #0]
cmp r2, r3
 . . .

Device

In-memory
stub

Memory
Registers
CPU state

Device

In-memory
stub

Memory
Registers
CPU state

Avatar

Analysis script

plugins
Analysis
plugins

Avatar² overview

 33

Emulator

 . . .
mov r2, r0
mov r3, r1
add r3, r3, #1
ldr r2, [r2, #0]
cmp r2, r3
 . . .

Device

In-memory
stub

Memory
Registers
CPU state

Device

In-memory
stub

Memory
Registers
CPU state

Avatar

Analysis script

plugins
Analysis
plugins

Avatar² overview

 34

Emulator

 . . .
mov r2, r0
mov r3, r1
add r3, r3, #1
ldr r2, [r2, #0]
cmp r2, r3
 . . .

Device

In-memory
stub

Memory
Registers
CPU state

Device

In-memory
stub

Memory
Registers
CPU state

Avatar

Analysis script

plugins
Analysis
plugins

Avatar² overview

 35

Emulator

 . . .
mov r2, r0
mov r3, r1
add r3, r3, #1
ldr r2, [r2, #0]
cmp r2, r3
 . . .

Device

In-memory
stub

Memory
Registers
CPU state

Device

In-memory
stub

Memory
Registers
CPU state

Avatar

Analysis script

plugins
Analysis
plugins

Avatar² overview

 36

Emulator

 . . .
mov r2, r0
mov r3, r1
add r3, r3, #1
ldr r2, [r2, #0]
cmp r2, r3
 . . .

Device

In-memory
stub

Memory
Registers
CPU state

Device

In-memory
stub

Memory
Registers
CPU state

Avatar

Analysis script

plugins
Analysis
plugins

Avatar² overview

 37

Emulator

 . . .
mov r2, r0
mov r3, r1
add r3, r3, #1
ldr r2, [r2, #0]
cmp r2, r3
 . . .

Device

In-memory
stub

Memory
Registers
CPU state

Device

In-memory
stub

Memory
Registers
CPU state

Avatar

Analysis script

plugins
Analysis
plugins IRQ

Avatar² overview

 38

Emulator

 . . .
mov r2, r0
mov r3, r1
add r3, r3, #1
ldr r2, [r2, #0]
cmp r2, r3
 . . .

Device

In-memory
stub

Memory
Registers
CPU state

Device

In-memory
stub

Memory
Registers
CPU state

Avatar

Analysis script

plugins
Analysis
plugins IRQ

Avatar² overview

 39

Emulator

 . . .
mov r2, r0
mov r3, r1
add r3, r3, #1
ldr r2, [r2, #0]
cmp r2, r3
 . . .

Device

In-memory
stub

Memory
Registers
CPU state

Device

In-memory
stub

Memory
Registers
CPU state

Avatar

Analysis script

plugins
Analysis
plugins IRQ

Avatar² overview

 40

Avatar²

● Successor of Avatar (the first)…
● Complete redesign, maintained
● Open source, all paper examples are available

– https://github.com/avatartwo/avatar2
● Integrates many tools

– OpenOCD, Panda, QEMU, Angr

Avatar2 : A Multi-target Orchestration Platform
Marius Muench, Dario Nisi, Aurélien Francillon, Davide Balzarotti
Workshop on Binary Analysis Research 2018

Avatar: A Framework to Support Dynamic Security Analysis of Embedded Systems' Firmwares”
Jonas Zaddach, Luca Bruno, Aurelien Francillon, Davide Balzarotti
NDSS 2014

https://github.com/avatartwo/avatar2

 44

Inception

● When we have the device and the source
code?
– There may be some binary blobs
– Code specific to the hardware

● Bootloaders, device drivers

● KLEE is a symbolic execution environment
– Does not handle binary/asm
– Ignores hardware interaction

“Inception: System-wide Security Testing of Real-World Embedded Systems Software”
N. Corteggiani, G. Camurati, A. Francillon, USENIX Security 2018

 47

Inception Compilation

 48

Inception Compilation

 49

Inception Compilation

 50

Inception Compilation

 51

Inception Compilation

 52

Inception Execution

 53

Inception Execution

 54

Inception Execution

● Executor => Modified Klee

 55

Inception Execution

 56

Inception Execution

 57

Memory checks

 59

 60

Symbolic Execution as a
compilation

● SymCC : an LLVM compiler pass for embedding symbolic
execution into binaries
– Shows very high performance
– Used in hybrid fuzzing

● SymQEMU:
– for binaries
– integrated in QEMU emulator

● Both projects will soon be used for embedded devices too
Symbolic execution with SymCC: Don't interpret, compile!
S. Poeplau, A. Francillon
29th USENIX Security Symposium, 2020 , Boston, MA
Distinguished Paper Award Winner

SymQEMU: Compilation-based symbolic execution for binaries
S. Poeplau, Francillon, Aurélien,
NDSS 2021

 62

Conclusion
● Embedded software security is difficult

– Many specific aspects to embedded software
– Hardware customisation makes every device very

different
● Various possible approaches

– we need to continue develop analysis methods and tools
● A very active field of research

– a lot of research needed

Thanks

Questions ?

This work together with many people
– Andrei Costin
– Jonas Zaddach
– Giovanni Camuratti
– Nassim Corteggiani
– Apostolis Zarras
– Davide Bazarotti
– Marius Muench
– Dario Nisi
– Paul Olivier...

31/03/22 -

Firmware analysis options!
Source / No source

Device No Device
(Firmware only)

Static
analysis

Dynamic
analysisGood “enough”

Emulator or
IO Forwarding

Dynamic analysis
With Avatar (binary)
or Inception (source)

Existing/Known
Core + peripherals

Peripherals
modelling

On device Analysis
Limited visibility

Unpack
Firmware

Identify :
- code/data
- start address
- instruction set
- obfuscations

Rediscover
known bugs

Find new
bugs

Firmware analysis options!
Source / No source

Device No Device
(Firmware only)

Static
analysis

Dynamic
analysisGood “enough”

Emulator or
IO Forwarding

Dynamic analysis
With Avatar (binary)
or Inception (source)

Existing/Known
Core + peripherals

Peripherals
modelling

On device Analysis
Limited visibility

Unpack
Firmware

Identify :
- code/data
- start address
- instruction set
- obfuscations

Rediscover
known bugs

Find new
bugs

Manual analysis process

firmware

Manual analysis process

firmware

decrypt

unpack

IHEX format

plain text firmware

Manual analysis process

firmware

decrypt

unpack

detect CPU

Motorola m68k-based CPU

Manual analysis process

firmware

decrypt

unpack

debug interfaces?

UART consoles?

known/obvious vulns? 802.15.4 functions

UART “boot>” prompts

detect CPU

Manual analysis process

firmware

decrypt

unpack

debug interfaces?

UART consoles?

known/obvious vulns?

buy devicedetect CPU

Manual analysis process

firmware

decrypt

unpack

debug interfaces?

UART consoles? buy device setup devicedetect CPU

known/obvious vulns?

Manual analysis process

firmware

decrypt

unpack

debug interfaces?

UART consoles?

known/obvious vulns?

buy device

disassemble/analyze
device

detect CPU setup device

Manual analysis process

firmware

decrypt

unpack

detect
code, CPU

debug interfaces?

UART consoles?

known/obvious vulns?

buy device

disassemble/analyze
device

Open problem: Hard to automate

setup device

Manual analysis process

firmware

decrypt

unpack

detect
code, CPU

debug interfaces?

UART consoles?

known/obvious vulns?

buy device

disassemble/analyze
device

Goal: Automate these steps

setup device

 79

Unpacking & Custom Formats
● How to reliably unpack and learn formats?

ZIP

 80

Unpacking & Custom Formats
● How to reliably unpack and learn formats?

ZIP

EXE PS

 81

Unpacking & Custom Formats
● How to reliably unpack and learn formats?

ZIP

EXE PS

-Is executable?
-Yes!
-Then is firmware!

 82

Unpacking & Custom Formats
● How to reliably unpack and learn formats?

ZIP

EXE PS

Printer driver

 83

Unpacking & Custom Formats
● How to reliably unpack and learn formats?

ZIP

EXE PS

ASCII85

Printer driver

 84

Unpacking & Custom Formats
● How to reliably unpack and learn formats?

ZIP

EXE PS

ELF

ASCII85

Printer driver

 85

Unpacking & Custom Formats
● How to reliably unpack and learn formats?

ZIP

EXE PS

ELF

ASCII85

Printer driver

Binary patch?

 86

Unpacking & Custom Formats
● How to reliably unpack and learn formats?

ZIP

EXE PS

ELF

ASCII85

Printer driver

Update executable?

Binary patch?

 87

Unpacking & Custom Formats
● How to reliably unpack and learn formats?

ZIP

EXE PS

ELF

ASCII85

Printer driver

Update executable?

Binary patch?

Whole FW image?

 88

Unpacking & Custom Formats

● Often a firmware image is just a
binary blob
– File carving required

● Bruteforce at every offset with all known
unpackers

– Have good heuristics to prioritize unpackers
– Have good heuristics when to stop carving

Architecture

Architecture

Architecture

Architecture

 759 K total files collected

 172 K filtered files (firmware candidates)

 32 K firmwares analyzed

 26 K firmwares unpacked (fully or partially)

 1.7 M files after unpacking

Unpacking

Filter non firmware

Random selection

Unpack attempt

Files extraction

Firmware analysis options!
Source / No source

Device No Device
(Firmware only)

Static
analysis

Dynamic
analysisGood “enough”

Emulator or
IO Forwarding

Dynamic analysis
With Avatar (binary)
or Inception (source)

Existing/Known
Core + peripherals

Peripherals
modelling

On device Analysis
Limited visibility

Unpack
Firmware

Identify :
- code/data
- start address
- instruction set
- obfuscations

Rediscover
known bugs

Find new
bugs

Simple static analysis
●Misconfiguration

● Web-server configs, Code repositories
● Credentials

● Weak/Default/Hard-coded
● Data enrichment

● Versions → Software packages
● Keywords → Known problems (e.g., telnet,
shell, UART, backdoor)

●Correlation and clustering
● Based on: Fuzzy hashes, Private SSL keys,
Credentials

Fuzzy Hashing
● Fuzzy hash=similarity measure of two objects (e.g.,

files, streams)

● Gives a “similarity index”

One to One fuzzy hash coparison

26k

850 d

150 y

130k # firmwares

Single CPU Time

 Correlation via fuzzy-hashes (ssdeep, sdhash)
◦E.g., Vulnerability Propagation

Example: Correlation

Firmware 1

 Correlation via fuzzy-hashes (ssdeep, sdhash)
◦E.g., Vulnerability Propagation

Example: Correlation

Firmware 1

 Correlation via fuzzy-hashes (ssdeep, sdhash)
◦E.g., Vulnerability Propagation

Example: Correlation

Firmware 1

Firmware 2

Firmware 3

95%

99%

0%

 Correlation via fuzzy-hashes (ssdeep, sdhash)
◦E.g., Vulnerability Propagation

Example: Correlation

Firmware 1

Firmware 2

Firmware 3

95%

99%

0%

RSA Keys
 SSL keys correlation
vulnerability propagation

RSA Keys
 SSL keys correlation
vulnerability propagation

 1 RSA private key:
30,000 vulnerable
devices online

RSA Keys
 SSL keys correlation
vulnerability propagation

 1 RSA private key:
30,000 vulnerable
devices online
 Not all the same
brand

RSA Keys
 SSL keys correlation
vulnerability propagation

 1 RSA private key:
30,000 vulnerable
devices online
 Not all the same
brand

● 38 new vulnerabilities (CVE)

● Correlated them to 140 K vulnerable online devices

● 693 firmware files affected by at least one
vulnerability

Results: Summary

Firmware analysis options!
Source / No source

Device No Device
(Firmware only)

Static
analysis

Dynamic
analysisGood “enough”

Emulator or
IO Forwarding

Dynamic analysis
With Avatar (binary)
or Inception (source)

Existing/Known
Core + peripherals

Peripherals
modelling

On device Analysis
Limited visibility

Unpack
Firmware

Identify :
- code/data
- start address
- instruction set
- obfuscations

Rediscover
known bugs

Find new
bugs

What else can we test in those firmware
images?

● High exposure?
● Often privileged?
● Hard to secure?
● Often custom

Web interfaces !

“Automated Dynamic Firmware Analysis at Scale: A Case Study on Embedded Web Interfaces”,
A. Costin, A. Zarras, A. Francillon, ACM AsiaCCS 2016

The dynamic analysis approach
● Many testing tools for dynamic analysis

– Many pen testing tools…
– Dedicated to find vulnerabilities in normal websites
– Many are automated
– Drawback: a lot of false positives

● Idea :
– Emulate the unpacked firmware images
– Launch the web interface
– Use standard tools to test it

 110

Our Framework

 111

Our Framework

 112

Our Framework

 113

Our Framework

 114

Our Framework

 115

Our Framework

 116

Identified Emulation Types

 117

Identified Emulation Types

 118

Identified Emulation Types

 119

Identified Emulation Types

 120

Identified Emulation Types

 121

Hosted web interface

● In theory that would be a good idea, but
– There are many embedded web servers

● Which cannot be easily installed on a standard distribution
– Web servers used are often customized

● Or mostly custom
– Native CGIs
– Call some custom libraries (device configuration)
– Still some relative success with this approach

 122

Proposed Emulation Technique

 123

Proposed Emulation Technique

 124

Proposed Emulation Technique

 125

Proposed Emulation Technique

 126

Proposed Emulation Technique

 127

Proposed Emulation Technique

 128

In summary

● We now can run the firmware in an emulator, on
a generic kernel

● Works, but
– We need to manually start daemons, init scripts
– How does this differs from a real system ?
– Fails often due to missing custom kernel module, or

option

Similar work by CMU, see:
“Towards Automated Dynamic Analysis for Linux-based Embedded
Firmware”, Chen, Egel, Woo, Brumley, NDSS 2017
https://github.com/firmadyne/firmadyne

 133

Dataset and Processing

 139

Vulnerabilities by type

Transparency problem

● In the good old times,
hardware was
documented
– Tektronix 2445

Service manual 330
pages

Lack of transparency

Lack of transparency:
● Makes information asymmetry worse

– Customers will not want to pay more ?
● Makes it harder to analyse devices

– And detect compromise, analyse attacks
● Makes difficult to build secure systems

– How to compare offers when no information is public
– How to learn about security features ?

● Or is there something to hide? Backdoors ?

From an actual smartphone chip...

147

Dumped a bootloader in Mask ROM (No FBI, it's not an iPhone!)

This talk

● Finding vulnerabilities in embedded devices
– To secure them (or exploit them)

● What makes this a difficult task?

● Generally two approaches: Static or Dynamic
– Both have advantages/drawbacks
– We will mainly focus on dynamic analysis

1.Collect a large number of firmware images
2.Perform broad but simple static analysis
3.Correlate across firmwares

Many advantages:
● No intrusive online testing, no devices involved
● Scalable
But also many challenges

Analyzing firmware images

« A Large Scale Analysis of the Security of Embedded Firmwares »
Andrei Costin, Jonas Zaddach, Aurélien Francillon, Davide Balzarotti
USENIX Security 2015

● Firmware identification (.exe/.ps/...)
● Firmware Unpacking
● Representative dataset
● Analysis, Scalability
● Results confirmation

Challenges

Firmware identification

← Clearly a Firmware

← Clearly a Firmware Clearly not a Firmware →

Firmware identification

← Clearly a Firmware Clearly not a Firmware →

Firmware identification

?

Firmware identification

● E.g., upgrade by printing a PS document

 Replacing wires by
wireless in a system
 Lack of security
 Anyone can control
the fireworks

 Fortunately firmware
updates possible and now
deployed

Surprise device found: Fireworks!

Short Paper: A Dangerous `Pyrotechnic Composition': Fireworks, Embedded Wireless
and Insecurity-by-Design, A. Costin, A. Francillon, ACM Wisec 2014

Device Availability

● Firmware only available
– E.g., downloaded online

● Emulator available
– Generic emulator: works if code to analyse is generic
– Specific emulator rarely available

● Device available
– Limited access to the device?
– But need to extract firmware?

 157

Rehosting process

