DISASTER PROTECTION IN EO-DCNS LEVERAGING COOPERATIVE STORAGE

Fen Zhou (IMT NE)

IMT Colloque
“Gestion de crise et numérique”

March 31, 2022
1. INTRODUCTION: EO-DCN
2. NETWORK SURVIVABILITY AND LARGE-SCALE DISASTER FAILURES
3. PROTECTION AGAINST LARGE-SCALE DISASTER FAILURES IN EO-DCNS
4. OPTIMIZATION SOLUTIONS: ILP AND HEURISTIC
5. NUMERICAL RESULTS
6. CONCLUSIONS
CHAPITRE 1
INTRODUCTION: EO-DCN
Dramatically Increased Data

- 2,142 ZB Internet data in 2035
- 700 hyperscale datacenters by the end of 2021

https://reseaux.orange.fr/cartes-de-couverture/fibre-optique
1.1 Elastic Optical Inter-DataCenter Networks (EO-DCNs)

Elastic Optical Inter-DataCenter Networks (EO-DCNs):
- High spectrum efficiency
- Huge bandwidth
- Low latency and interference
- High availability
- Big data storage and cloud services

Figure 1: Architecture of EO-DCN [1].

Chapitre 2: Network Survivability and Large-Scale Disaster Failures
2.1 Survivability in EO-DCNs

Link Failure
Construction, damaged Connectors, ……

Node Failure
Node equipment failure (transponder, switching) ……

Large Area Failure
Datacenter system damage, earthquake, wars, attacks …
2.1 Survivability in EO-DCNs

Link Failure
Construction, damaged Connectors, ……

Node Failure
Node equipment failure (transponder, switching) ……

Large Area Failure
Datacenter system damage, earthquake, wars, attacks ……
Link Failure
Construction, damaged Connectors, ……

Node Failure
Node equipment failure (transponder, switching) ……

Large Area Failure
Datacenter system damage, earthquake, wars, attacks ……

Most common!

Threat on Datacenter networks!!
2.1 Survivability in EO-DCNs

Link Failure
Construction, damaged Connectors, ……

Node Failure
Node equipment failure (transponder, switching) ……

Large Area Failure
Datacenter system damage, earthquake, wars, attacks ……

- Cables were cut by ship, 2017, Somalia. $10 million/day
- Weather and climate disasters, 2017, USA. $306 billion
- A "power surge" in one British Airways’ datacenter, 2017
Disasters

- Earthquake, hurricane, volcano, flood, fire, war ...
- Average loss of DC disconnection /minute: 402,542 $ in the USA and 212,254 $ in the UK in 2018

Figure 2: Earthquake Hazards Map [2].

CHAPITRE 3
PROTECTION AGAINST LARGE-SCALE DISASTER FAILURES IN EO-DCNS
Disasters: Volcano, Tsunamis, Hurricane, Flood, etc...

Disaster zones: Set of OXC nodes (DCs) and fiber links

DC content survivability

Disaster-disjoint primary path and backup path

Disaster zone

Request at node 1 with content

Primary path 1-2

Backup path 1-3-5
Dedicated End-to-content Backup Path Protection (DEBPP)

- Backup mirrored content on a redundant DC (Traditional storage system)
- 1 working path + 1 end-to-content backup path
- Dedicated 1+1 protection
Example: Node 5 requires content C with a bandwidth of 8 FS

DEBPP
► Spectrum Usage: 16 FS
► Maximum FS Index: 8 FS
► Storage Space: 2 C
Cooperative Storage System (CSS)+Multilpath Routing

- Original content divided into k fragments
- Encoded into distinct numberless fragments with rate-less coding
- Recovery with k encoded fragments
- **Cooperative storage**: Content stored on k DCs each with one encoded fragment
- **Multiple working paths** + 1 end-to-content backup path
Example: Node 5 requires content C with a bandwidth of 8 FS

C-DEBPP
- Spectrum Usage: 12 FS
- Maximum FS Index: 4 FS
- Storage Space: 1.5 C

DEBPP
- Spectrum Usage: 16 FS
- Maximum FS Index: 8 FS
- Storage Space: 2 C
Disaster-Resilient Service Provisioning Problem

Inputs:
- Set of disaster zones (DZs)
- Set of requests and their required
- Number of DCs and content replica (k)
- EON topology and set of FSs

Outputs:
- DC location
- Placement of content replica
- Disaster-disjoint primary and backup paths
- FS allocation

Objective: Minimize total spectrum utilization
- Spectrum utilization + Storage space
- DEBPP vs. C-DEBPP

Problem complexity and resolutions
- NP-hard problem !
- Optimal solution : Integer linear program (ILP) → not scalable
- Scalable and tractable approach: Heuristics or Column generation
CHAPITRE 4
OPTIMIZATION SOLUTIONS: ILP AND HEURISTIC
Methodology 1: Joint ILP Formulation

Objective: minimize spectrum usage

Objective:
\[
\text{Minimize } \theta_1 \cdot (\sum_{a \in A} \sum_{r \in R} P^W_{ra} \cdot \phi_r + \sum_{a \in A} T_a) + \theta_2 \cdot \Delta
\]

Constraints:
- Datacenter and content assignment
- Disaster-disjoint path generation
- Spectrum allocation

Computational complexity:
- DEBPP
 - No. of dominant variables: \(O(|R|^2, |R|, |A|, |R|, |Z|, |C|, |D|)\)
 - No. of dominant constraints: \(O(|R|^2|A|, |R|, |Z|, |A|)\)
- C-DEBPP
 - No. of dominant variables: \(O(|R|^2, |R|, |A|, |R|, |Z|, |C|, |D|)\)
 - No. of dominant constraints: \(O(|R|^2|A|, |R|^2, |Z|, |R|, |Z|, |A|)\)
Main Idea of Heuristic: decomposition

- Step 1: Content and replica placement (ILP, facility location)
- Step 2: Working/backup path generation (K-shortest path routing)
- Step 3: Spectrum allocation (Coloring algorithm)
Step 1: DC assignment and content placement

- K DC nodes: Average minimum distance ([3])
- Place content replica in DCs closer to its popular region

Step 2-1: Generate first path
- k-shortest paths routing to DCs
- Select the path with the minimum cost (spectrum utilization)
Step 2-2: Generate DZ-disjoint path
► Delete the DZ-affected links and nodes
► Apply again k-shortest routing to DCs until k paths are found
4.2 Methodology 2: Heuristic

Step 3: Spectrum allocation (coloring based SA algorithm)

- Spectrum continuity constraint
- Spectrum contiguity constraint
- Spectrum distinction constraint

Coloring algorithm based Spectrum Allocation

- Path pair using same link
- Spectrum conflict
- Conflict graph [4]
- Allocate FSs

CHAPITRE 5

NUMERICAL RESULTS
Simulations Settings

- NSFNET network
 - 14 nodes, 44 links
 - 3.1 nodal degree, 14 DZs

- COST-239
 - 11 nodes, 52 links
 - 4.7 nodal degree, 7 DZs

- Hardware: 3.5 GHz CPU, 8 GBytes RAM
- Software: CPLEX 12.06
- Traffic
 - FSs: randomly [1, 10]
 - No. of requests: 10, 20, 30, 40

- Parameters:
 - Available DC locations: 4, 5
 - No. of contents: 10
 - No. of replicas per content (K): 3, 4, 5
Spectrum utilisation in NSFNET : C-DEBPP vs. DEBPP

(a) Objective vs. K (5 probable DC locations)

(b) Objective vs. K (4 probable DC locations)

Up to 17.8%
Spectrum utilization in COST239 : C-DEBPP vs. DEBPP

(a) Objective vs. K (5 probable DC locations)
(b) Objective vs. K (4 probable DC locations)

COST239
Storage Space: C-DEBPP vs. DEBPP

Storage space

NSFNET

COST239

Up to 50%
CHAPITRE 6
CONCLUSIONS
6.1 Summary

Protection Schemes
- DEBPP
- C-DEBPP (Cooperative Storage, Multipath routing)

Advantage of C-DEBPP
- Spectrum utilization savings: up to 17.8%
- Storage space savings: up to 50%

Optimization Methods
- ILP
- Heuristic

M. Ju, Y. Liu, F. Zhou, S. Xiao. Disaster-Resilient and Distance-adaptive Services Provisioning in Elastic Optical Inter-Data Center Networks. IEEE JLT: 1-14, March 2022

6.2 Perspectives

- Security-aware multilayer planning
- Disaster-resilient service provisioning
- Optimization techniques are helpful: ILP, heuristic, CG
THANK YOU
Email: fen.zhou@imt-nord-europe.fr
Web: http://fen-zhou.github.io