

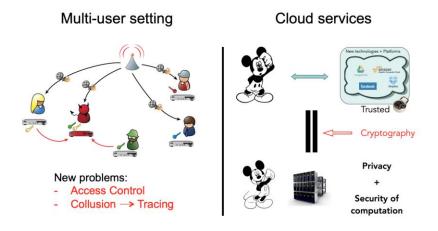
# PRIVACY IN CRYPTOGRAPHIC PROTOCOLS

HIEU PHAN (TELECOM PARIS)

#### **CRYPTOGRAPHY**

#### Security of Data

- Integrity with hash function
- Confidentiality with encryption
- Authenticity with MAC, signature
- Identification with zero-knowledge proof


#### New Technologies → Advanced cryptographic primitives

- Big Data, Cloud Computing → widespread real-life applications
- Privacy: protect personal information.
  - Security
  - Trust on Authorities
  - → Security of Computation on Untrusted Machine.





#### **CONTEXT: NEW TECHNOLOGIES AND PLATFORMS**



#### Achieving Privacy:

- Decentralized Cryptography / Efficient Multi-party Computation
- Computing on untrusted servers
- Oritical scenarios: in a dictatorship





# DECENTRALIZED CRYPTOGRAPHY EFFICIENT MULTI-PARTY COMPUTATION

#### Some Previous Results

- Public Traceability in Broadcast Encryption
  - based on pairings

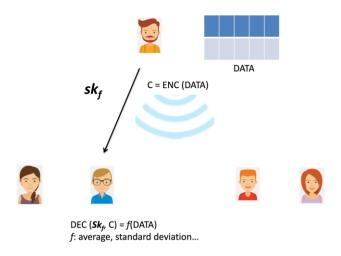
[EUROCRYPT '05] [CRYPTO '14, ACM CCS '17]

based on lattices

Delegated PSI and applications in Contact Tracing [ASIACRYPT '20]

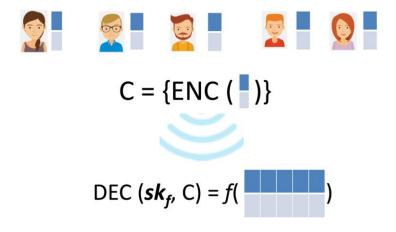
Vaudenay20: "centralized systems put the anonymity of all users in high danger while decentralized systems put the anonymity of diagnosed people in high danger against anyone."

 $\rightarrow$  a third category that combines the best of both worlds.


#### Ongoing project

Decentralized Functional Encryption






#### **FUNCTIONAL ENCRYPTION**



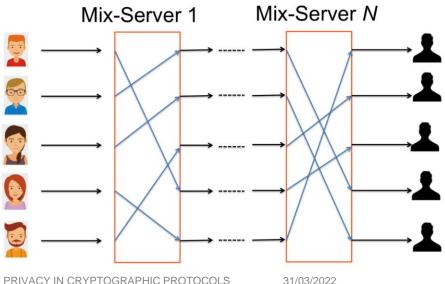
In practice: number of functions is quite limited 
→ centralized version has limited interest.





- Decentralized Functional Encryption for linear functions [ASIACRYPT '18, CRYPTO '20]
- Challenge: more general functions and on fuzzy data (great interest to a large number of related areas such as biometric identification, privacy in machine learning.)



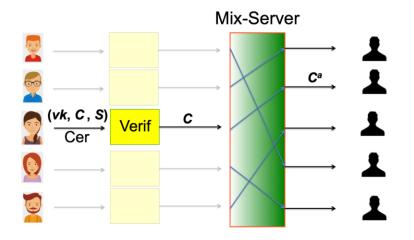



#### **COMPUTING ON UNTRUSTED SERVERS**

**CONTEXT: ELECTRONIC VOTING** 

### Decentralisation is not always possible → security of computations on untrusted servers

Typical Exemple: Electronic Voting.








#### **COMPUTING ON UNTRUSTED SERVERS**

**CONTEXT: ELECTRONIC VOTING** 



#### User:

- given Cer: the right to vote
- encrypt the vote → C
- sign on  $C \rightarrow S$
- signature **S** is verifiable with **vk**

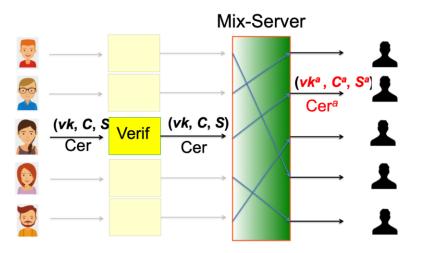
#### Classical Shuffling: Re-encryption + Permutation

- **1** Re-encrypt  $C \to C^a$ :  $C^a$  and C are unlinkable
- The input and output contain the same ballots
  - → Zero-knowledge Proof (ZKP) of a global permutation



Les scrutins des élections professionnelles sont clos depuis le 6 décembre 2018, à 17 heures, heure de Paris. Consultez les résultats.

1 023 211 électeurs relevant de l'éducation nationale étaient appelés à désigner leurs représentants au comité technique ministériel de l'éducation nationale. 436 321 suffrages ont été exprimés soit une participation de 42,64 %. Le taux de participation est en hausse de 0,91 point par rapport à 2014 (41,73 %).








#### COMPUTING ON UNTRUSTED SERVERS

ELECTRONIC VOTING: AVOIDING ZKP OF A GLOBAL PERMUTATION [PKC20]



#### Mix-Server can do randomization

- Sa is a valid signature of Ca, under vka
- Cera is a valid certification

**Mix-Server cannot forge** a signature on a new message

- Each output ballot corresponds uniquely to one input ballot
- ② One cannot link  $(vk^a, C^a, S^a, Cer^a)$  to (vk, C, S, Cer)

**Tool: Linearly Homomorphic Signature** 



# UNDER DICTATORSHIPS ANAMORPHIC ENCRYPTION AND DEMOCRYPT

# Anamorphic Encryption: Private Communication against a Dictator

Giuseppe Persiano\*, Duong Hieu Phan\*\*, and Moti Yung\* \* \*

(To appear in EUROCRYPT 2022)

**Democrypt** - Cryptography for Democracy: Allowing Free Petitions In Dictatorships (Preliminary version)

Duong Hieu Phan\* and Moti Yung\*\*

(To appear in ePrint)





### RESEARCH TOPICS IN CRYPTOGRAPHY

### **Focus on Privacy:**

- Decentralization
- Practical MPC
- Post-quantum Security



