
Center for Energy Efficiency of Systems (CES) - Mines ParisTech
Thursday, May 04, 2017

Boutros Ghannam
Maroun NEMER
Thermal numerical simulation, some examples

ISGTW: A flame held by a flameholder. The FOCUS project simulations have demonstrated that taking radiation into consideration when making calculations modifies the dynamics of the flame.

Time: 300000 hours and 400 CPUs

Image courtesy of FOCUS

Steam explosion with nuclear fuel
The radiative heat transfer between the hot molten UO2 and the surrounding water is a key mechanism for controlling the boiling process

Image courtesy of Walter W. Yuen

Steel Slabs Reheating Furnace
Coupled Radiation and heat diffusion
Control strategies allow less energy consumption and better heating quality / Nevertheless their accuracy is very sensitive to the speed and the precision of the numerical simulations
Steel Slabs Reheating Furnace

Context and objectives of the thesis work

- **Computing 3D radiation heat transfer**
 - Direct exchange factors
 - Total exchange factors

- **Computing heat diffusion in the slabs**

Radiation heat flux B.C. Coupling 3DFTDT 3D Temperature Profile in the slab
Comparison of CPU and GPU performances

- **CPU and GPU peak performance**
 - Calculation: Tflops vs. 100 Gflops
 - Memory bandwidth: ~10x

![Comparison of CPU and GPU performances](image-url)
Comparison of CPU and GPU architectures

CPU Architecture

GPU Architecture

GTX 680
Discretization

The Multiple Absorption Coefficient Zonal Method (MACZM)

- Volume elements (voxels):
 - Uniform radiative properties (mean value)
 - Uniform temperature
Computation acceleration by Artificial Neural Networks

The Multiple Absorption Coefficient Zonal Method (MACZM)

- Artificial Neural Networks (ANNs) replace the integral computation for GEFs

Generic Exchange Factors (GEFs)

\[GEF = f(a_1, a_2, n_x, n_y, n_z, \tau_1 \ldots \tau_9) \]

Artificial Neural Networks (ANNs)

\[
\begin{align*}
\begin{bmatrix} X \end{bmatrix} &= \begin{bmatrix} W_1(20 \times 5) \end{bmatrix} \times \begin{bmatrix} P \end{bmatrix} + \begin{bmatrix} B_1 \end{bmatrix} \\
Z &= F\left(\begin{bmatrix} X \end{bmatrix} \times \begin{bmatrix} W_2 \end{bmatrix} \right) + b_2 \\
(P) &= (a_1, a_2, n_x, n_y, n_z, \tau_i)
\end{align*}
\]
Application to a test furnace

Numerical and experimental verification

- External view
- Internal view

Test Furnace mesh

Numerical validation

<table>
<thead>
<tr>
<th>Comparison MACZM – MODRAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct exchange factors</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Combustion volume(1)-</td>
</tr>
<tr>
<td>combustion volume(2)</td>
</tr>
<tr>
<td>Combustion volume(1)-</td>
</tr>
<tr>
<td>steel slab</td>
</tr>
<tr>
<td>Combustion volume(2)-</td>
</tr>
<tr>
<td>steel slab</td>
</tr>
<tr>
<td>Base - base</td>
</tr>
</tbody>
</table>

Experimental validation

- Burner 1
- Burner 2
- Slab of steel
- Supports

- External view
- Internal view

Supports
Implementation of MACZM on the GPU

Parallelization and device code optimization

- **GPU parallelization**
 - SIMD mode
 - Each thread computes one GEF (discrete line and ANN)

- **Discrete line algorithm**
 - Parametric 6-line (No-divergence)
 - Scene data in char
 - Performance enhancement using registers

- **Artificial Neural Networks**
 - Constant memory matrix multiplication
 - Synchronized call for memory access efficiency
3D Finite difference method

Discretization and Differentiating schemes

- **Heat diffusion PDE (3D):**

 \[
 \frac{\partial T}{\partial t} = \alpha \left(\frac{\partial^2 T}{\partial x^2} D + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right), \quad \alpha = \frac{k}{\rho c_p}
 \]

 B.C.: Radiation heat flux

- **Finite difference discretization schemes (1st order time - 2nd order space)**
 - **Simple explicit**: Forward time – centered space
 - Stability condition
 - Accuracy: \(O(\Delta t)\)
 - **Simple implicit**: Backward time – centered space
 - Unconditionally stable
 - Accuracy: \(O(\Delta t)\)
 - \(N^3 \times N^3\) matrix
 - **Crank-Nicolson** scheme: ½ explicit & ½ implicit
 - Unconditionally stable
 - Accuracy: \(O(\Delta t^2)\)
 - \(N^3 \times N^3\) matrix
Application to the simulation of a slab

- **3000 simulations/second for 32 x 64 x 16 meshes**
Thermal model

- **Wall temperature:**
 - Constant in vertical sections
 - Input for the heat balance

- **Gas temperature supposed constant in vertical sections**

- **Radiation flux is projected on the slabs for computing heat diffusion in the slabs**

- **Rails**
 - Cooled by water flow
 - 2D analytical model (steady state)
Industrial Solution
Industrial Solution
Thank you